Posts tagged genetic

Prostate Cancer Update: New Gene

A genetic pattern (variation) found on human chromosome 8 has been found to have an association with a 5x risk increase for developing prostate cancer. It is thought to cause 2/3 of African-American cases and 1/3 of Caucasian-American cases of the disease.

Another biomarker might be coming! Pharmacogenomics companies: ready … go!

Full story at Geneticsandhealth.com.

  • Share/Bookmark

Gene Therapy: Eye-Eye Doc!

Twelve patients are in the middle of a first-of-its-kind trial in the UK. They are undergoing gene therapy to correct a genetic gene deficiency; a gene called RPE65. It is supposed to be expressed at the beack of the eye, in the retina, and without that gene expression the eye won’t interpret images.

Currently in one patient, Robert Johnson, he can now see outlines during the day, but little at night – he has had genes inserted into one eye. The procedure itself requires extensive precision, including a risk of tearing the retina. (See image to the right; Source: Moorfields Eye Hospital)
Story adapted from BBC.
See full story here.
  • Share/Bookmark

Harvesting Bioenergy from Switchgrass

Recently, scientists have made progress on finding the key genetic elements responsible for controlling lignin production in swtichgrass though monitoring of mRNA transcripts. This discovery brings switchgrass one step closer to being used as a source of bioethanol. See full story at Scientists Turn Genetic Keys To Unlock Bioenergy In Switchgrass.

  • Share/Bookmark

Genotyping Becomes More Affordable

A new machine called OpenArray(TM) from BioTrove, Inc. now allows genomic research to conduct genotyping (SNP) analysis across much larger patient groups.

As described on Traditional Medicine:

Unlike other technologies, which can genotype hundreds of thousands of SNPs in a few patient samples, OpenArray allows researchers to analyze SNPs across tens of thousands of patient samples – dramatically expanding study size and data significance. OpenArray SNP genotyping is also more efficient than previous technology because of its flexible design. A single OpenArray plate holds as few as 16 or as many as 3072 separate assays, which can be run against 48-144 samples per plate. Since the OpenArray NT Imager can process three OpenArray plates at once, it can generate more than 9000 data points in less than 10 minutes, ultimately generating over 100,000 data points per day with a single employee.

This is a huge step forward in genetics research, but we are still awaiting the $1 genomic sequence. Right now we are bordering on the $1000 dollar genome, which was talked about by Michael J. Heller, Ph.D., Departments of Bioengineering/Electrical and Computer Engineering, University of California, San Diego – yesterday at the Cambridge Healthtech Institute’s “Next Generation Sequencing Applications and Cast Studies” conference in San Diego, CA.

If you’re wondering just how competitive this space is, there is a $10 million X-Prize for Genomics that was issued by Craig Venter, for the first team to successfully sequence 100 human genomes in 10 days. Details of the prize are as follows:

The $10 million X PRIZE for Genomics prize purse will be awarded to the first
Team that can build a device and use it to sequence 100 human genomes within 10
days or less, with an accuracy of no more than one error in every 100,000 bases
sequenced, with sequences accurately covering at least 98% of the genome, and at
a recurring cost of no more than $10,000 per genome.

As it seems, the race is on!

, , , , , , , , , , ,

  • Share/Bookmark